Power Maths White Rose Edition calculation policy, LOWER KS2

KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.
Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.
In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns. By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 . Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively. Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2 - and 3 -digit numbers by a single digit.

Children develop column methods to support multiplications in these cases.
For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300,120 and 3 , as these can be divided by 3 using known facts.

Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount and develop this with the aid of a bar model and other representations alongside.
in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.

Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100 , and also with place value.

Power Maths © Pearson 2022

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Adding 100s	Use known facts and unitising to add multiples of 100. $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$	Use known facts and unitising to add multiples of 100. $3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$	Use known facts and unitising to add multiples of 100 . Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
3-digit number +1 s , no exchange or bridging	Use number bonds to add the 1 s . 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. $\begin{aligned} & 4+4=8 \\ & 214+4=218 \end{aligned}$	Use number bonds to add the 1 s . $\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	Understand the link with counting on. $245+4$ Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1s. $5+4=9$ So, $245+4=249$

			$198+2+3=203$
3-digit number +10s, with exchange	Understand the exchange of 10 tens for 1 hundred. \square \square	Add by exchanging 10 tens for 1 hundred. $184+20=?$ $184+20=204$	Understand how the addition relates to counting on in 10s across 100. $184+20=?$ I can count in 10s ... 194 ... 204 $184+20=204$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$
3-digit number + 3-digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid. $326+541$ is represented as:	Represent the place value grid with equipment to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.

3-digit number + 3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid.	Use column addition, ensuring understanding of place value at every stage of the calculation. $126+217=343$

			Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?
3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number +2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

		allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	
Representing addition problems, and selecting appropriate methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems. $275+99=?$ $275+99=374$	Use representations to support choices of appropriate methods. I will add 100, then subtract 1 to find the solution. $128+105+83=?$ I need to add three numbers.
Year 3 Subtraction			
Subtracting 100s	Use known facts and unitising to subtract multiples of 100.	Use known facts and unitising to subtract multiples of 100.	Understand the link with counting back in 100s.

	100 bricks,	$\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$			$400-200=200$ Use known facts and unitising as efficient and accurate methods． I know that 7－4＝3．Therefore，I know that $700-400=300$ ．
3－digit number －1s，no exchange	Use number bonds to subtract the 1 s ． $214-3=?$ 10 LOLLIES $\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	Use num $\begin{aligned} & 9-4=5 \\ & 319-4 \end{aligned}$	b T 自 I ？ T 目 I 315	s to subtract the 1 s ．	Understand the link with counting back using a number line． Use known number bonds to calculate mentally． $476-4=?$ $\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$
3－digit number －1s，exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged． Use place value equipment．	Represe place va $151-7$		uired exchange on a	Calculate mentally by using known bonds． $151-7=?$ $151-1-6=144$

3-digit number - 10s, no exchange	Subtract the 10s using known bonds. $381-10=?$ 8 tens with 1 removed is 7 tens. $381-10=371$	Subtract the 10s using known bonds. 8 tens - 1 ten $=7$ tens $381-10=371$	Use known bonds to subtract the 10s mentally. $\begin{aligned} & 372-50=? \\ & 70-50=20 \end{aligned}$ So, $372-50=322$
3-digit number - 10s, exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment. $210-20=?$	Understand the link with counting back on a number line. Use flexible partitioning to support the calculation. $235-60=?$

		 I need to exchange 1 hundred for 10 tens, to help subtract 2 tens. $210-20=190$	$\begin{aligned} 235 & =100+130+5 \\ 235-60 & =100+70+5 \\ & =175 \end{aligned}$
3-digit number - up to 3-digit number	Use place value equipment to explore the effect of splitting a whole into two parts, and understand the link with taking away.	Represent the calculation on a place value grid.	Use column subtraction to calculate accurately and efficiently.

3-digit number - up to 3-digit number, exchange required	Use base 10 equipment to enact the exchange of 1 hundred for 10 tens, and 1 ten for 10 ones. $\begin{aligned} & \text { 有 } \\ & \text { B } \\ & \text { 日 } \end{aligned}$	Model the required exchange on a place value grid. $175-38=?$ I need to subtract 8 ones, so I will exchange a ten for 10 ones.	Use column subtraction to work accurately and efficiently. If the subtraction is a 3-digit number subtract a 2-digit number, children should understand how the recording relates to the place value, and so how to line up the digits correctly. Children should also understand how to exchange in calculations where there is a zero in the 10 s column.
Representing subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison.	Children use alternative representations to check calculations and choose efficient methods. Children use inverse operations to check additions and subtractions. The part-whole model supports understanding.

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	I can see 3 groups of 8 . I can see 8 groups of 3 .		
Using commutativity to support understanding of the timestables	Understand how to use times-tables facts flexibly. There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Understand how times-table facts relate to commutativity. I need to work out 4 groups of 7. I know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.
Understanding and using $\times 3$,	Children learn the times-tables as 'groups of but apply their knowledge of commutativity.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables.

$\times 2, \times 4$ and $\times 8$ tables.	I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.		-0.०० -•००० $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$
Using known facts to multiply 10s, for example 3×40	Explore the relationship between known times-tables and multiples of 10 using place value equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens. What is the same? What is different?	Understand how unitising 10s supports multiplying by multiples of 10 . 4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$	Understand how to use known times-tables to multiply multiples of 10 . $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$
Multiplying a 2-digit number	Understand how to link partitioning a 2-digit number with multiplying.	Use place value to support how partitioning is linked with multiplying by a 2 -digit number.	Use addition to complete multiplications of 2-digit numbers by a 1-digit number.

\begin{tabular}{|c|c|c|c|}
\hline Understanding remainders \& \begin{tabular}{l}
Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. \\
\(\|\|\|\|\|\|\|\| \square \square\) \\
There are 13 sticks in total. \\
There are 3 groups of 4 , with 1 remainder.
\end{tabular} \& \begin{tabular}{l}
Use images to explain remainders. \\
\(22 \div 5=4\) remainder 2
\end{tabular} \& Understand that the remainder is what cannot be shared equally from a set.
\[
\begin{aligned}
\& 22 \div 5=? \\
\& 3 \times 5=15 \\
\& 4 \times 5=20 \\
\& 5 \times 5=25 \ldots \text { this is larger than } 22 \\
\& \text { So, } 22 \div 5=4 \text { remainder } 2
\end{aligned}
\] \\
\hline Using known facts to divide multiples of 10 \& \begin{tabular}{l}
Use place value equipment to understand how to divide by unitising. \\
Make 6 ones divided by 3. \\
Now make 6 tens divided by 3. \\
What is the same? What is different?
\end{tabular} \& \begin{tabular}{l}
Divide multiples of 10 by unitising. \\
12 tens shared into 3 equal groups. 4 tens in each group.
\end{tabular} \& \begin{tabular}{l}
Divide multiples of 10 by a single digit using known times-tables.
\[
180 \div 3=?
\] \\
180 is 18 tens. \\
18 divided by 3 is 6 . \\
18 tens divided by 3 is 6 tens.
\[
\begin{aligned}
\& 18 \div 3=6 \\
\& 180 \div 3=60
\end{aligned}
\]
\end{tabular} \\
\hline 2-digit number divided by 1-digit number, no remainders \& Children explore dividing 2-digit numbers by using place value equipment.

\square
\square

$$
48 \div 2=?
$$ \& Children explore which partitions support particular divisions. \& Children partition a number into 10 s and 1 s to divide where appropriate.

$$
\begin{gathered}
60 \div 2=30 \\
8 \div 2=4
\end{gathered}
$$

$$
68 \div 2=34
$$

\hline
\end{tabular}

[^0]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	First divide the 10s． Then divide the 1 s ． \square 日日曰日	I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$	Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
2－digit number divided by 1－digit number， with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups． There are two groups of 14 and 1 remainder．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ \square $29 \div 2=14 \text { remainder } 1$	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \\ & 17 \div 5=3 \text { remainder } 2 \\ & 67 \div 5=13 \text { remainder } 2 \end{aligned}$ There are 13 children in each line and 2 children left out．

Year 4						
	Concrete	Pictorial				Abstract
Year 4 Addition						
Understanding numbers to 10,000	Use place value equipment to understand the place value of 4 -digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between 1,000 s and 100s. - $2,000+500+40+2=2,542$				Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000 s. 1 thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$	Use unitis mental \square I can ad $200+300$ So, 4,2	ing and lculation the 100 $\begin{aligned} & 0=500 \\ & +300= \end{aligned}$	wn facts to entally. 556	support	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$

Power Maths White Rose Edition calculation policy

3 thousands - 2 thousands = 1 thousand
$3,501-2,000=1,501$

Represent place value equipment on a place value grid to subtract, including exchanges where needed.

Use column subtraction, with understanding of the place value of any exchange required.

	Th	H	T	O
	I	2	5	0
-		3	2	0
				0

Th	H	T	O	
	I	2	5	0
-		3	2	0
			3	0

	Th	H	T	O
	\boldsymbol{x}	$\mathbf{\prime}$	2	5
-		3	0	
		2	0	
		9	3	0

	Th	H	T	O
	X	2	5	0
-		3	2	0
		9	3	0

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	$5 \times 1=5$ $5 \times 0=0$	Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$	$\times 5$ table and $\times 6$ table I know that $7 \times 5=35$ so 1 know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$
Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2 . $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition.	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{array}{rlrl} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ & = & 108 \end{array}$

Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many 1s, 10s and 100s. $\begin{array}{ll}\text { There are } 4 \times 6 \text { ones... } & 24 \text { ones } \\ \text { There are } 4 \times 3 \text { tens } \ldots & 12 \text { tens } \\ \text { There are } 4 \times 1 \text { hundreds ... } 4 \text { hundreds }\end{array}$ $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3 -digit numbers by a single digit.	Use the formal column method for up to 3 -digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.
Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total.	Understand that commutativity can be used to multiply in different orders. $\begin{array}{r} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{array}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}_{1}= \\ & 12 \times 10=120 \end{aligned}$ So, $24 \times 5=120$

	$\begin{aligned} & \underbrace{5 \times 2}_{10 \times 2} \times 3=30 \\ & 10 \times 30 \end{aligned}$		
Year 4 Division			
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. 0000000 0000000 0000000 0000000 $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group	Represent divisions using place value equipment.	Use known facts to divide 10s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$

	8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	$9 \div 3=3$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	
Dividing 2-digit and 3-digit numbers by a single digit by partitioning into 100s, 10s and 1 s	Partition into 10s and 1s to divide where appropriate. $39 \div 3=?$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s, 10s and 1s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ 3 groups of I ten 3 groups of 3 ones $39=30+9$ $\begin{gathered} 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s, 10s and 1s using a partwhole model to divide where appropriate. $142 \div 2=?$ $\begin{aligned} & 100 \div 2=50 \\ & 40 \div 2=20 \\ & 6 \div 2=3 \\ & 50+20+3=73 \\ & 142 \div 2=73 \end{aligned}$
Dividing 2-digit and 3-digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ I will split it into 30 and 12, so that I can divide by 3 more easily.	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7. $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required. Understand that different partitions can be used to complete the same division.

Divide by sharing	Share using place value equipment	Share by exchanging	Share using known facts and partitioning where appropriate $142 \div 2=?$ $\begin{gathered} 100 \div 2=50 \\ 40 \div 2=20 \\ 6 \div 2=3 \\ 50+20+3=73 \\ 142 \div 2=73 \end{gathered}$
Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared.	Represent the remainder as the part that cannot be shared equally.	Understand how partitioning can reveal remainders of divisions.

[^0]: Power Maths © Pearson 2022

